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Goal
Efficiently find optimal solutions with a minimal set of 

computer/physical experiments, and considering 

• Multiple objectives

• Uncertainty in outputs

• Potential feasibility constraints (on inputs/outputs)

Motivation
• In many real-life systems (engineering design,

process design, supply chain design, etc.), the

optimization problems studied are multi-objective

(exhibiting trade-offs between individual objectives),

and outputs observations are noisy (repeated

experiments of the same inputs may yield different

output observations).

• The input/output relationships for objectives and

constraints are often a black box: experimentation

is required to evaluate them. These (physical or

computer) experiments can be expensive (in terms

of cost, time, etc), and the budget for

experimentation is typically constrained.

• The goal then is to detect solutions with very high

quality (optimal or near-optimal) within as few

experiments as possible.

• Traditional optimization heuristics (genetic algorithms,

evolutionary algorithms) are ill-suited to achieve this

goal.

• Machine learning (ML) techniques (fit for use in

settings with scarce data) combined with

optimization (OR) insights and/or statistical

learning, to achieve the goal.

Approach
• Model (expensive, black-box) continuous output

functions f using Gaussian Process Regression (GPR)

with heterogeneous noise (stochastic kriging) [1]. This

allows us to obtain an estimation of the output value (෠𝒇)

at unobserved locations, along with an estimator for the

uncertainty on this value (𝑠2, also referred to as the

MSE). This MSE captures both metamodel uncertainty

and stochastic uncertainty.

• Use infill criterion (acquisition function) to select next

input combination to sample (Bayesian optimization) .

Results
Parameter optimization for plasma process in adhesive

bonding application (JMLab, Flanders Make)

• Maximize break strength and minimize production

costs (bi-objective) by tuning 6 parameters

• Avoid configurations that lead to adhesive failure or

visual damage of the sample

Key take-aways
• Efficient and effective search for solutions to

expensive optimization problems with noise

• Proposed (Bayesian) approach is shown to be robust

to the noise level and clearly outperforms the well-

known NSGA-II
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Adaptive and Smart 
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1- INITIAL SAMPLE
Design experiments

2- SIMULATION
Compute expensive 

responses
?

3- SCALARIZATION
Transform the problem

4- BUILD METAMODEL
based on simulations 

outputs

4- TRAIN CLASSIFIER
to determine the 

feasibility of a point

6- RETURN
non-dominated 

solutions

5- SEARCH
using an infill criterion

• Augmented Tchebycheff

scalarization

• Dynamic assignment of 

weights 

• Smartly choose 

initial design

• Latin hypercube 

sampling

• PSO, GA, PS, SGD, …
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*Algorithm based on the work presented in [3]

Results MO-GP for low and moderate noise levels (𝜸) 

Outperforms common evolutionary algorithms (NSGA-II)
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